27
Choice and interpretation of models

Previous chapters have illustrated the use of regression models using simple
bodies of data containing relatively few variables. More commonly, we are
faced with large data files containing many variables. Sometimes derived
variables such as Quetelet’s weight-for-height index are included in the
model in addition to or in place of the original variables. In such situations
it can be difficult to know where to begin, and all too easy to lose one’s way.
This chapter offers some guidance towards the sensible use of regression
methods.

27.1 Variable selection strategies

A lot has been written about the process of finding the ‘best’ regression
model in problems involving many variables. Much of this activity has
been concerned with the search for an optimal strategy, and the relative
merits of different approaches have been hotly debated. Many computer
programs implement one or more of these strategies in an automatic model
selection option called stepwise regression. These programs usually work
by a combination of the step-up strategy (examining the effect of inclusion
of variables not yet in the model) and the siep-down strategy (examining
the effect of of removing variables currently in the model). With the recent
increased speed and reduced cost of computers, some programs now offer an
exhaustive search of all subsets from a list of possible explanatory variables.

In assessing the value of such procedures it is important to note that
regression models have two very different uses in epidemiology. Historically
they were first used to derive risk scores designed to classify subjects into
graded categories with respect to risk of developing disease. Later, when
attention turned to interpretation of the parameter estimates and the close
relationship between regression and stratification methods became appar-
ent, regression models became important tools for analyses whose aim was
the advancement of scientific knowledge. For convenience we refer to these
two uses as prediction and explanation, respectively.

When the aim is prediction, the best model is the one which best pre-
dicts the fate of a future subject. This is a well defined task and automatic
strategies to find the model which is best in this sense are potentially use-
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ful. However, when used for explanation the best model will depend on the
scientific questions being asked, and automatic selection strategies have no
place.

An important tool for assessing how well a model predicts the fate of a
future subject is cross-validation — a technique in which each subject in
turn is removed from the dataset and the actual outcome for that subject
is compared with the predicted outcome using the model based on the re-
maining observations. The deviance for a model will always decrease with
the introduction of more parameters, but prediction of future observations
is not always improved. There comes a point at which increasing the com-
plexity of the model to gain a slightly better fit to the observed data will
reduce the accuracy of its predictions. Cross-validation measures the pre-
dictive properties of the model directly and therefore reflects the adverse
consequences of fitting too many parameters.

Cross-validation is potentially expensive in computer time, but simple
approxirmate criteria have been developed which allow the assessment of
whether any step up or down in an automatic model selection procedure
would be expected to improve prediction. The best known is Akaike’s
information criterion, namely

(Reduction in deviance) — 2 x (Increase in number of parameters).

If this is positive the increased complexity would be expected to improve
prediction and if negative, to degrade prediction.

27.2 Explanatory variables and natural experiments

This book has been entirely concerned with the use of models whose aim
is explanation. In such analyses there is a clear distinction between the
roles of exposures and confounders but this distinction is lost when us-
ing regression models — both become explanatory variables. Ignoring the
distinctions between different types of explanatory variable is appropriate
when using regression models for prediction, since all variables have the
same role, but in a scientific analysis of data different explanatory vari-
ables may play quite different roles. .

The distinction between exposure and confounder, as described in this
book, relies heavily on the idea of experiments of nature. An exposure is
something which we can intervene to change while a confounder is a variable
which we would have held constant had we designed the experiment rather
than leaving it to nature. It is helpful to think of regression analysis as
simulating an experiment, in the same way. For example, the effects of A
in the model

log(Rate) = Corner+ A+B +C

are the effects of changing the level of A in a simulated experiment in
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which B and C are held constant. Similarly, the effects of B are the effects
of changing the level of B.in a simulated experiment in which the levels
of A and C are held constant. Thus regression analysis does not simulate
a single experiment but many. This flexibility of the regression approach
is undoubtedly useful, but in practice it can also become its most serious
weakness. To extend our analogy, the data analyst is in a position like
that of an experimental scientist who has-the capability to plan and carry
out many experiments within a single day. Not surprisingly a cool head is
required! Before embarking on a regression analysis it is essential to spend
an hour or so, preferably away from the computer, to list the main scientific
questions and to think how these can be answered by fitting a series of .
models.” Analyses which follow such thought are always simpler and more
incisive than those which are born of uncritical use of the computer or
worse, of a stepwise regression program.

It will rarely be necessary to include a large number of variables in the
analysis, because only a few exposures are of genuine scientific interest in
any one study, and there are usually very few variables of sufficient a pri-
ort importance for their potential confounding effect to be controlled for.
Most scientists are aware of the dangers of analyses which search a long
list of potentially relevant exposures. These are known as data dredging
or blind fishing and carry a considerable danger of false positive findings.
Such analyses are as likely to impede scientific progress as to advance it.
There are similar dangers if a long list of potential confounders is searched,
either with a view to explaining the observed relationship between dis-
ease and exposure or to enhancing it-— findings will inevitably be biased.
Confounders should be chosen a priori and not on the basis of statistical
significance. 'In particular, variables which have been used in the design,
such as matching variables, must be included in the analysis.’

Recently there has been some dispute between ‘modellers’, who support
the use of regression models, and ‘stratifiers’ who argue for a return to the
methods described in Part I of this book. Logically this dispute is based
on a false distinction — there is no real difference between the methods.
In practice the difference lies in the inflexibility of the older methods which
thereby imposes a certain discipline on the analyst. Firstly, since stratifi-
cation methods treat exposures and confounders differently, any change in
the role of a variable requires a new set of computations. This forces us
to keep in touch with the underlying scientific questions. Secondly, since
strata must be defined by cross classification, relatively few confounders
can be dealt with and we are forced to control only for confounders of a
priori importance. These restraints can be helpful in keeping a data anal-
ysis on the right tracks but once the need for such discipline is recognized,
there are significant advantages to the regression modelling approach.
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EXAMPLE: DIETARY FAT AND TOTAL ENERGY INTAKE

The analogy between regression models and imaginary experiments is very
useful in making decisions about whether to include a variable in a re-
gression model or not. An interesting illustration arises in nutritional epi-
demiology when considering the relationship between total energy intake
and the incidence of coronary heart disease. This relationship was first
detected because relationships were observed between intake and disease
risk for a large number of nutrients — the more that was eaten, the lower
the risk. A relationship with total energy intake, possibly reflecting energy
expenditure, was considered the most likely explanation.

However, once this relationship is recognized, how should the relation- .

ship between risk and other aspects of the diet, notably fat intake, be
analysed? One way is to measure nutrient density, which is the ratio of
daily intake of fat to the total energy intake. This approach is open to the
criticism that such nutrient densities are not usually independent of total
energy intake — subjects with high energy intakes typically have a different
pattern of nutrient densities from subjects with low energy intakes.

If energy intake is to be regarded as a confounder, then it should be
controlled for, either by stratification or with a regression model. In the
latter case we fit a model such as

log(Rate) = Corner + Fat + Energy

and interpret the parameters representing the effect of fat in terms of an
experiment in which fat intake is varied but the total energy content of the
diet is held constant. Of course, such an experiment would require other
constituents of the diet such as carbohydrate to vary in order to maintain
the total energy intake and this must be born in mind when interpreting
parameters.

Exercise 27.1. How would you interpret the effect of fat in the model

log(Rate) = Corner + Fat + Carbohydrate + Energy?

Other authors have approached the problem of allowing for total energy
expenditure by dividing total calories between calories from fat and calories
from other sources, and fitting the model

log(Rate) = Corner + Fat-calories + Other-calories.

The parameters representing the effect of fat intake must now be interpreted
in terms of an experiment in which fat intake is varied while intake of other
calories is held constant. In this experiment a reduction of fat intake would
result in a reduction of total energy intake. Such an experiment would be
difficult to interpret, even if it could be carried out.
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Finally we should point out that a real public health intervention to
reduce dietary fat intakes would be unlikely to mimic either of the above
imaginary experiments. When dietary fat intake is reduced in free-living
subjects, some of the energy intake is made up from other sources, but typ-
ically there is a net reduction in energy intake. This demonstrates that the
use of models to predict the effect of intervention usually requires consider-
able extra knowledge. In particular, we need to have some understanding
of the mechanism by which change will be effected.

27.3 Endogenous and exogenous explanatory variables

The ‘effects’ of an explanatory variable are defined in terms of differences
in log rate (or log odds) between groups of subjects with different levels of
the variable. Thus the effect of cigarette smoking is defined by contrasting
rates in smokers and non-smokers, and the effect of serum cholesterol con-
centration (classified as high or low) is defined as the difference in log rate
bétween subjects with high cholestrol concentration and subjects with low
cholesterol concentration. This language encourages people to interpret
‘effects’ as the change in rates to be expected as a result of intervention to
change the level, but this is a big step. How are the subjects to alter their
level? For a variable like serum cholesterol there is no direct way to alter
its level and any intervention would have to be indirect, for example by
change of diet or by cholesterol lowering drugs. However, there is no guar-
antee that such mechanisms will bear any relationship to the mechanism
which led the the study subjects to have different levels in the first place.
The effect of indirectly changing the levels of serum cholesterol in a group
of subjects may be completely different from that estimated by comparing
groups of subjects who just happen to have different levels of cholesterol.
The same problem arises in an even more acute form when studying
the effects of two or more interrelated variables, such as blood pressure
and obesity in relation to the incidence of coronary disease. The effect
of blood pressure controlled for obesity might now be interpreted as the
expected effect of changing blood pressure while keeping obesity constant.
However, is it be possible to intervene to change blood pressure while keep-
ing obesity constant? While this could be achieved, for example by using
drug treatment, this method of intervention would bear little relation to the
mechanism that led subjects to their current levels in the first place, and
it might have different effects. Intervention aimed at life style changes are
more likely to duplicate these conditions, but might be expected to change

.. both blood pressure and obesity simultaneously. In this case the estimated

effects of blood pressure controlled for obesity, or obesity controlled for

blood pressure could be poor predictors of the effect of the intervention.
The position is much clearer when considering environmental exposures,

such as radiation dose, occupational exposure to toxic chemicals, and even
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cigarette smoking. In such cases, it is.entirely reasonable to imagine an
experiment in which exposure of groups is directly varied without any con-
sequent change in other variables, and the parameters of regression models
are easier to interpret.

Variables such as cholesterol concentration, blood pressure, and obesity
are called endogenous. The word endogenous means ‘growing from within’.
Variables such as smoking, diet and occupation are called exogenous. The
distinction between endogenous and exogenous variables is borrowed from
the behavioural sciences and, although the distinction is not hard and fast,
is useful in drawing attention to the different assumptions which it is neces-
sary to make for the two kinds of variable when interpreting the parameters
of regression models as expected effects following intervention.

27.4 Interpretation of interaction

An underlying theme of this chapter is that while distinctions between
different types of explanatory variable are not relevant to the mechanical
process of estimating the parameters of a regression model, they are es-
sential to the strategy adopted in the analysis and to the interpretation
of results. This is particularly true when dealing with interaction. The
word describes a purely mathematical concept in regression models. Its
relatjionship to the scientific language of epidemiology requires further con-
sideration of the nature of the variables involved.

We shall first consider interaction between two confounders. There
seems to be no word to describe this in epidemiology, almost certainly
because the phenomenon is of no scientific interest. Whether we include
such terms in a model or not is a purely technical matter of trading the
number of parameters against freedom from assumptions. Usually if there
are two strong confounders such as age and sex, the gain in efficiency from
assuming no interaction between them is extremely modest and it will
usually be safer to include an interaction term regardless of its significance.
However, if we are worried about the aggregate effect of five or six weak
confounders, then omission of interaction terms is unlikely to have a major
effect on estimates of parameters of interest.

Interaction between a confounder and an exposure of interest is known
in epidemiology as effect modification and is clearly of considerable scientific
importance, since the consistency of an effect in diverse study groups would
usually be considered relevant to labelling a relationship as ‘causal’, in the
sense of predicting the effect of future interventions. The ease with which
we can test for such interaction in the framework of regression models
represents a clear advance over earlier stratification methods in which the
absence of such interaction is a hidden assumption.

Finally, the question of interaction between two expesures of interest is
usually of considerable importance, both for the scientific interpretation of
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Fig. 27.1. Misclassification of exposure.

an analysis and for its implications for preventive intervention. We shall
deal with this in more detail in Chapter 28.

27.5 Errors of measurement of explanatory variables

In the models discussed in this book it is assumed that explanatory vari-
ables are correctly measured. This assumption is often unjustified in prac-
tice, but epidemiologists have generally been prepared to ignore measure-
ment errors. Some have believed that to do so is justifiable providing there
is no relationship between errors of measurement of exposure and disease
outcome, that is if there is no differential misclassification. This is now
known to be false.

To illustrate the effect of ignoring measurement error we consider the
hypothetical situation illustrated in Fig. 27.1, in which exposure E is mea-
sured imperfectly by measurement M. As a result of this misclassification
there is a probability of 0.2 that an exposed subject is misclassified as un-
exposed, and a probability of 0.2 that an unexposed subject is misclassified
as exposed. The probability of failure depends only on true exposure, tak-
ing the value 0.1 for exposed subjects and 0.05 for unexposed subjects.
An epidemiological study observes only the marginal relationship between

_measured exposure and failure.

"Exercise 27.2. Calculate probabilities for each of the eight tips of the tree in

Fig. 27.1. By collapsing over exposure categories, calculate the probabilities for
each of the four possible combination of measured exposure and disease (failure)
status. Hence derive the probability tree expressing the probability of failure
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Table 27.1. Diastolic blood pressure (DBP) and rate ratios for stroke

Baseline Rate Mean DBP

DBP ratio at baseline after 2 years
<69 0.276 63.6 72.7
70-79 0.395 73.8 77.0
80-89 0.595 83.6 83.0
90-99 1.000 93.5 91.2
100-109  1.904 103.4 99.2

> 110 3.875 116.4 107.3

conditional upon measured exposure.

It is clear from this exercise that the effect of exposure is decreased by
the measurement error: whereas the risk ratio for true exposure is 2, the
risk ratio for measured exposure is only 1.42. It is worth noting that
20% miselassification would be regarded as acceptable in many branches of
epidemiology.

Similar considerations apply when exposure takes on more than two
levels. The observed dose-response relationship between measured expo-
sure and disease outcome is less steep than the underlying relationship with
true exposure, under any realistic assumptions about the dose-response re-
lationship. This is illustrated by the data of Table 27.1 which concern the
relationship between diastolic blood pressure and subsequent incidence of
stroke.* These data are taken from a re-analysis of seven cohort studies,
and the first two columns of the table summarize the relationship between
diastolic blood pressure at a single initial visit (the ‘baseline’ measurement)
and subsequent incidence. Note that in the rate ratios the fourth category
is taken as reference. These were obtained by fitting the model

log(Rate) = Corner + Study + DBP

where study is a categorical variable with one level for each study, so that
confounding of the relationship due to differences between the study co-
horts is eliminated. The third column shows the mean of the baseline
diastolic pressures for each of the five categories. The log rate ratios are
plotted against the mean baseline values in Fig. 27.2 (solid line). This
line represents the apparent dose-response relationship between a single
measurement of diastolic blood pressure and the incidence of stroke. It is
approximately log-linear, so that essentially the same relationship would
have been obtained by fitting the model

log(Rate) = Corner + Study + [DBP],

*From Macmahon, S. et al. (1990), The Lancet, 335, 765-774.
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Fig. 27.2. Apparent and true dose-response relationships.

where [DBP] is measured per mm Hg. However, this line is a poor repre-
sentation of the true relationship between blood pressure and the incidence
of stroke. Blood pressure is subject to both short-term fluctuations and to
measurement errors, neither of which will be reflected in the risk of stroke
which is determined by the longer-term average level of blood pressure. The
final column of Table 27.1 shows the mean blood pressure taken two years
later in representative samples taken from each of the five groups. These
figures provide a better estimate of long-term average blood pressure in
the six groups as the short-term fluctuations and measurement errors are
washed out. Plotting the rate ratios for stroke against these new values for
mean diastolic blood pressure provides a truer estimate of the relationship
between stroke incidence and the long- term average level of diastolic pres-
sure. This plot is shown in Fig. 27.2 as a broken line and clearly represents
a stronger relationship than the apparent relationship based on a single
baseline measurement. This finding is true in general. When an explana-
tory variable suffers from measurement error or within subject variability
the linear effects of this variable will be closer to zero than when there is
no error or variability. This is known as regression dilution

This second example demonstrates both the attenuation of relationships

~owing to exposure measurement error and one of the methods which has

been suggested for correcting for it. An alternative approach is to formally
adopt probability models such as that illustrated in Fig. 27.1 and to esti-
mate the conditional probabilities for every branch of the tree. Validation
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substudies are required in order to estimate the misclassification probabili-
ties. A difficulty with this approach is that when there are several levels of
exposure, the number of parameters in the model can become very large.

In summary, when exposures are subject to measurement error, the ap-
parent exposure effects will be less pronounced than the true underlying
relationships. When confounders are measured inaccurately, the conse-
quences are even more serious. Since the relationship between disease and
confounder is not correctly estimated in these circumstances, it follows that
the analysis will not properly control for confounding. If both exposure and
confounder are measured inaccurately, there exists the possibility that the
two sets of errors may be interrelated, so that the apparent relationship be-
tween exposure and confounder may be quite different from that between
the underlying variables. In these circumstances models for relationships
between measured exposure, measured confounder, and response have no
interpretation in terms of an imaginary experimental intervention and may
be scientifically meaningless. Such might well be the position in our ex-
ample involving dietary fat and total energy intake. Measured intakes of
total energy and of each specific nutrient are usually derived from the same
dietary records, taken over a period of several days. Not only are such mea-
surements very imperfect measures of long-term intake, but it is reasonable
to believe that errors in the measured fat intake will be closely related to
errors in measured energy intake, since the former is an important contrib-
utor to the latter. Regression models which include total energy as well
specific nutrients may, therefore, not be interpretable in practice.

Solutions to the exercises

27.1 The parameter(s) measure the effect of changes in fat intake while
holding both total energy intake and carbohydrate intake constant. To
reduce fat intake while holding both total energy and carbohydrate intake
constant would be very difficult for an individual to do and would require
large changes in other components of the total energy intake, such as pro-
tein.

27.2 From top to bottom the probabilities are 0.016, 0.144, 0.004, 0.036,
0.008, 0.152, 0.032, and 0.608. The remaining calculations are shown in
Fig. 27.3. The probability of failure conditional upon having been measured
as exposed is 0.075, while the failure probability conditional upon having
been measured as unexposed is 0.053.

SOLUTIONS

0.024/0.32 = 0.075

M+
0.024 + 0.296 = 0.32

0.206/0.32 = 0.925

0.036/0.68 = 0.053

0.036 + 0.644 = 0.68

0.644/0.68 = 0.947™~ g
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0.016 + 0.008 = 0.024

0.144 + 0.152 = 0.296

0.004 + 0.032 = 0.036

0.036 + 0.608 =.0.644

Fig. 27.3. Failure probabilities conditional upon measured exposure.
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